Learning with Blocks: Composite Likelihood and Contrastive Divergence

نویسندگان

  • Arthur U. Asuncion
  • Qiang Liu
  • Alexander T. Ihler
  • Padhraic Smyth
چکیده

Composite likelihood methods provide a wide spectrum of computationally efficient techniques for statistical tasks such as parameter estimation and model selection. In this paper, we present a formal connection between the optimization of composite likelihoods and the well-known contrastive divergence algorithm. In particular, we show that composite likelihoods can be stochastically optimized by performing a variant of contrastive divergence with random-scan blocked Gibbs sampling. By using higher-order composite likelihoods, our proposed learning framework makes it possible to trade off computation time for increased accuracy. Furthermore, one can choose composite likelihood blocks that match the model’s dependence structure, making the optimization of higher-order composite likelihoods computationally efficient. We empirically analyze the performance of blocked contrastive divergence on various models, including visible Boltzmann machines, conditional random fields, and exponential random graph models, and we demonstrate that using higher-order blocks improves both the accuracy of parameter estimates and the rate of convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unifying Non-Maximum Likelihood Learning Objectives with Minimum KL Contraction

When used to learn high dimensional parametric probabilistic models, the classical maximum likelihood (ML) learning often suffers from computational intractability, which motivates the active developments of non-ML learning methods. Yet, because of their divergent motivations and forms, the objective functions of many non-ML learning methods are seemingly unrelated, and there lacks a unified fr...

متن کامل

Training RBMs based on the signs of the CD approximation of the log-likelihood derivatives

Contrastive Divergence (CD) learning is frequently applied to Restricted Boltzmann Machines (RBMs), the building blocks of deep believe networks. It relies on biased approximations of the log-likelihood gradient. This bias can deteriorate the learning process. It was claimed that the signs of most components of the CD update are equal to the corresponding signs of the log-likelihood gradient. T...

متن کامل

Average Contrastive Divergence for Training Restricted Boltzmann Machines

This paper studies contrastive divergence (CD) learning algorithm and proposes a new algorithm for training restricted Boltzmann machines (RBMs). We derive that CD is a biased estimator of the log-likelihood gradient method and make an analysis of the bias. Meanwhile, we propose a new learning algorithm called average contrastive divergence (ACD) for training RBMs. It is an improved CD algorith...

متن کامل

Learning Deep Energy Models: Contrastive Divergence vs. Amortized MLE

We propose a number of new algorithms for learning deep energy models from data motivated by a recent Stein variational gradient descent (SVGD) algorithm, including a Stein contrastive divergence (SteinCD) that integrates CD with SVGD based on their theoretical connections, and a SteinGAN that trains an auxiliary generator to generate the negative samples in maximum likelihood estimation (MLE)....

متن کامل

Learning RBM with a DC programming Approach

By exploiting the property that the RBM log-likelihood function is the difference of convex functions, we formulate a stochastic variant of the difference of convex functions (DC) programming to minimize the negative log-likelihood. Interestingly, the traditional contrastive divergence algorithm is a special case of the above formulation and the hyperparameters of the two algorithms can be chos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010